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NMR relaxation and diffusion data analysis commonly uses a wide range of methods from simple expo-
nential fitting to Laplace inversions. The pros and cons of these methods are often the subject of intense
debate. We show that the ill-conditioned nature of such analysis gives rise to a range of solutions for
every method resulting in uncertainty in the spectral solution. Such uncertainty is in fact characteristic
of the inversion method. We show a simple method of sparse spectral representation can be used to
improve the statistics of multiple-exponential-based inversion schemes.
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1. Introduction

Analysis of relaxation and diffusion data often uses many differ-
ent methods, such as single exponential fitting for samples of sin-
gle molecular species, fitting with a few exponentials (e.g., two or
three), stretched exponential fitting, and Laplace inversion [1-5].
Methods other than single exponential fitting are used to analyze
the multi-exponential decays resulting from heterogeneity in the
underlying sample. Laplace inversion can be used to analyze arbi-
trarily complex decay spectra. However, there is often a debate in
the literature on which criteria to use in choosing the appropriate
method for a particular application, and the benefit of using more
complex spectral models.

The origin of this ambiguity is the ill-conditioned nature of mul-
ti-exponential inversion [6]. Given a data set with finite noise, the
solution spectrum is not unique and many spectra fit the experi-
mental decay data within the statistics of the noise. As a result,
we should expect the data to be fitted by many different spectra,
both with the same functional form for the spectra and with differ-
ent ones. In fact, the true solution is the entire ensemble of the
solution spectra as demonstrated in our recent work [7]. In the
present work, we apply a concept that is similar to these other
analysis methods, such as single- and multi-exponential fitting,
however an ensemble of solutions is obtained for each method.
For a given data set, many different fitting methods can yield solu-
tion spectra that are consistent with the data, meaning that data
misfit is not an adequate differentiator for choosing a method.
We show that the Akaike information criterion [8], which weighs
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both data misfit and model complexity, does provide an effective
metric for choosing the best stochastic spectral representation
for evaluating the uncertainty of particular spectral properties.

In addition, we demonstrate a Monte Carlo algorithm for La-
place inversion that uses a small number of variable-width boxcar
functions instead of the small number of delta functions used in
multi-exponential fitting. Note that in the limit of a large number
of delta functions assigned to fixed spectral locations, the multi-
exponential fit can be used to approximate the continuous spectral
range used in traditional Laplace inversion. We show the advan-
tage of using a sparse boxcar representation, when applied to spec-
tral uncertainty analysis, compared to other methods. Such an
approach may also have advantages when performing uncertainty
analysis on higher-dimensional NMR data because it requires few-
er spectral parameters than either the multi-exponential or the La-
place inversion approaches.

Once an ensemble of solution spectra have been generated,
questions about the shape of the spectrum can be posed in a prob-
abilistic form that allow the uncertainty of the answers to be quan-
tified. In Section 4 we examine the uncertainty in functionals of the
spectrum that relate to the total porosity and the bound-fluid
porosity in a rock sample.

2. Theory
2.1. General

NMR signals of T, decay in porous materials are well modeled
as a sum of decaying exponentials,

m(t) = /:f(T) exp(—t/T)dlog(T), (1)
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where m(t) is the signal as a function of time, f(T) is the spectrum as
a function of relaxation time T satisfying f(T) > 0. Using a more
compact operator notation,

m(t) = %(t)f, (2)

where %(t) is the kernel operator. Our goal is to describe the uncer-
tainty in fresulting from the inversion of a noisy measurement of m.

We start with noisy samples of m measured at discrete times
and put in the measurement vector m = {m(t;),i=1, ..., M}. Par-
ker and Song [9] have demonstrated that the noise in such a mea-
surement can often be modeled as an independent identically
distributed (IID) normal random process. In this case, with some
simplifying assumptions described below, the uncertainty of f is gi-
ven by the probability density function [7]

(f) oc exp *;Fllm*g(t)fllz , fM =0, (3)

where ¢? is the independently determined noise variance, t is the
vector of measurement times and (t)f is the vector of predicted
signal associated with the spectrum f. Note that in the parlance of
Bayesian inference [10], the distribution given by Eq. (3) is actually
a likelihood function, and is usually denoted by 7(m|f). The uncer-
tainty in f is described by the posterior distribution, 7(f|m). The
posterior is related to the likelihood through Bayes’ Rule,
7t(fim) < (m|f)7(f), where 7(f) is called the prior on f. Here we
make the simplifying assumption that 7(f) is constant, in which
case the posterior is proportional to the prior, yielding Eq. (3).

The uncertainty in f is fully described by Eq. (3). One way to
visualize this uncertainty is by randomly sampling this distribution
and using those samples to represent the uncertainty in f. This is
called the Monte Carlo method. From these samples histograms
can be generated and statistics such as mean and variance
computed.

2.2. Sparse basis representations

Although the uncertainty in f is formally described by Eq. (3),
the numerical computation of random samples from Eq. (3) usually
begins by expressing f in a discrete form with a finite number of
parameters. In [7] the spectrum was discretely represented by
100 spectral bins. Here we express f as a weighted sum of N basis
functions:

N

F(T) =" ouy(T; 4a), (4)
i=1

where the basis functions v;(T; 4;) are non-negative compact func-

tions of T whose shapes are controlled by the parameter vectors
J;. These basis functions are normalized such that

| wrdoiogm) 1. )

Substituting Eq. (4) into Eq. (1) yields

m(t) = zN:O‘idh‘(t; i), o =0, (6)
i=1

where

bt 1) = /0 " (T i) exp(—t/T)d log(T). %)

In the case of using Dirac delta functions as the basis functions, the
parameter vectors 4; contain the spectral position of the delta func-
tion, namely T;. Thus y;(T;T;) = 6(T — T;) and ¢;(t, T;) = exp(—t/T;).

We also consider basis functions which have finite spectral ex-
tent in order to evaluate the effect of spectral smoothness in the
evaluation of spectral uncertainty. We choose to use as basis func-

tions the boxcar functions so that Eq. (7) can be analytically eval-
uated. Boxcar functions are constant within a given range of T
and zero otherwise. Our boxcar functions are defined by
1 Lo Hi
B(T; TLO.THi) _ ) logT_iogT®> T <T<T (8)
0, otherwise,

where the normalization of Eq. (5) has been applied. Note that this
definition allow the basis functions to overlap, allowing, for exam-
ple, two overlapping basis functions to form a three-stepped func-
tion akin to a winners’ podium at a sports arena. In a limiting
case, this basis function can approach zero width, resulting in a
properly-normalized delta function. Substituting this basis function
into Eq. (7) yields

o ) ()

¢' t‘ T'OaT'l = : - : ) (9)
l( Y ) log (T?‘) — log (Ti“’)

where T, is the incomplete gamma function defined by

[o(x) = [;°e~¢/&dé. The incomplete gamma function is commonly
available in scientific computing libraries.

2.3. Monte Carlo sampler

With this sparse-basis representation of the spectrum, the
uncertainty in spectral parameters o and / is found by substituting
Eq. (6) into Eq. (3) to get

N

m— ) oudyi(t; 1)

i=1

2
7(f) o< exp [_% ] % > 0, (10)

We implement the Monte Carlo sampling in two steps: a non-linear
step in which the / parameters are sampled, followed by a quasi-
linear step in which the o parameters are sampled for a given sam-
ple of . parameters. The sample of « is computed using the non-
negative multi-normal sampler presented in [7].

In the first step a refinement of a Gibbs’ sampler, herein called
the directed Gibbs’ sampler, is used to sample the /. parameters
for one sampling iteration (see Appendix A for a description of
our directed Gibbs’ sampler). A standard Gibbs’ sampler, such as
Algorithm A.39 in [11], could not be used because it was found
to converge too slowly from the strong correlation between the
parameters in /4. During Gibbs’ sampling, as 4 is scanned over a
range of values, o is set to its maximum likelihood value found
by using the non-negative least squares (NNLS) algorithm of Law-
son and Hanson [12]. We are essentially generating a random sam-
ple of 2 while making the o parameter dependent on A.

3. Numerical experiments
3.1. Monte Carlo with different bases

Here we apply the above two sparse-basis approaches to exam-
ining the spectral uncertainty for a synthetic data example. To
facilitate comparison we use the same synthetic example, with
identical noise realization, as was used in [7]. This example is
shown in Fig. 1.

An example of the diversity of spectral solutions for delta-func-
tion bases is shown in Fig. 2a for N = 3 and in Fig. 2c for N = 4,
where the spectra for 20 samples from the total of 10* generated
Monte Carlo samples are superimposed on each plot. In Fig. 2b
and d are plotted the statistics of the time-domain measurement
predictions associated with the 10* spectral samples associated
with Fig. 2a and c, respectively. The bold curve in Fig. 2b and d pro-
vide the median of the 10* time-domain predictions, and the four
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Fig. 1. This example T, spectrum was used to synthesize the T, echo data shown in
the inset. The 8192 echos are sampled at an echo spacing of 0.0002 s starting at
0.0002 s. The noise standard deviation is 0.025 of the maximum echo value.

dashed curves on each plot provide the minimum and maximum
values at each time along with the 10% and 90% quantiles, with
these last two curves being barely visible at this plot scale. The
noisy echo data is also shown for comparison. Note that three delta
functions provide a good fit to the measurements. Using four delta
functions occasionally overfits the measurements, meaning that
the noise on the first few measurement points is sometimes being
fit. This is clearly seen in the upper dashed line in Fig. 2d and in the
increase in spectral values with diminishing T.

The corresponding plots for the boxcar-basis function (for N = 2
and N = 3) are shown in Fig. 3a-d. Comparing the dashed curves in
Fig. 3d, that mark the maximum and minimum of the time-domain
predictions, with those in Fig. 2d, it is clear that the extreme sam-
ples for the delta-function basis are overfitting the data for small
times, but the same is not true for the boxcar-basis. A comparison
of Fig. 3¢ with Fig. 2c shows that the delta-function basis contains
spectral energy at small T, values, while these are absent for the
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boxcar-basis. This demonstrates that the boxcar-basis is much less
prone to overfitting. The reason of this is that the low probability of
basis functions of both small width and small T, values makes it
unlikely to occur in this region that is largely unconstrained by
the measurements. The impact of this will be discussed later.

3.2. Akaike information criterion

When fitting data (e.g., m) with different models, models with
more parameters are expected to fit the data better than less com-
plex models. However, the problem of overfitting must be consid-
ered, since the additional model complexity may be fitting noise
instead of true signal. In signal processing, the Akaike information
criterion (AIC) is often used to balance the improvement in the y?
fit of the model to the data with increasing k (the number of model
parameters) against the commensurate increase in model com-
plexity [13]. This is an application of Ockham’s razor to the model
fitting problem. The AIC is defined by
AIC = y2. + 2k, (11)
where y2 = 72||m — SN, 06hi (&; 4)1%, 74, is the minimum value of
2 over the range of model parameters and k is the number of mod-
el parameters used to fit the data. For the delta-function basis
k = 2N and for the boxcar-function basis k = 3N. The conventional
use of the AIC is to choose the model that minimizes the AIC value.

We compute 10* Monte Carlo samples (after burn-in) for each
of our spectral models and approximate y2. by the minimum va-
lue of y2 over all the samples. The resulting values of the AIC versus
k for delta function and boxcar-function bases is plotted in Fig. 4.
AIC values contain an unknown additive constant that is depen-
dent only on the data, so here we plot AAIC = AIC — AICp.

The AIC values in Fig. 4 indicate that six parameters are ideal for
both the delta and boxcar bases. This supports our conclusion from
Fig. 2 that N = 3 is superior to N = 4 for the delta function basis,
and also shows that N = 2 results in a very poor fit for this basis.
Furthermore, the AIC suggests that the delta function basis is pre-
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Fig. 2. The spectral uncertainty for the synthetic data shown in Fig. 1 is illustrated here for delta-function bases with (a) N =3 and (c) N = 4. The spectral values are
superimposed as gray bars for 20 of the 10* sampled solutions. The true spectrum is overlain as a dashed curve. The statistics of the time-domain predictions associated with
the 10* spectral samples are shown in (b) for N = 3 and (d) for N = 4, with the median curve shown in bold, and the four dashed curves showing minimum values, the 10%
and 90% quantiles, and the maximum values. Only the minimum and maximum curves are readily apparent in (b), as the tightly-bounded quantile curves are hidden by the

thickness of the median curve.
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Fig. 3. The spectral uncertainty for the synthetic data shown in Fig. 1 is illustrated here for boxcar-function bases with (a) N =2 and (c) N = 3. The spectral values are
superimposed as gray curves for 20 of the 10* sampled solutions. The true spectrum is overlain as a dashed curve. The statistics of the time-domain predictions of these
spectral samples are shown in (b) for N = 2 and (d) for N = 3, with the median curve shown in bold, and the four dashed curves showing minimum values, the 10% and 90%
quantiles, and the maximum values. Only the minimum and maximum curves are readily apparent, as the tightly-bounded quantile curves are mostly hidden by the

thickness of the median curve.

ferred over the boxcar-basis. A more quantitative comparison can
be made by translating AAIC into an odds ratio, which is the prob-
ability of one model over another [14]. This odds ratio is given by
exp(AAIC). Using an odds ratio, the best Delta function model
(N = 3) is preferred to the best boxcar function model (N = 2) by
about 2.3 to 1. This is a weak preference [14]. By contrast, the best
model is preferred over the next best models with k < 6 by more
than 102 to 1. This is decisive evidence that at least six parameters
are needed to model the noisy time-domain measurements in this
example. As we will see later, the choice of delta-function versus
boxcar-function model depends also on how the spectrum is being
used, with smooth spectral models being preferred in some
applications.

4. Uncertainty comparisons using functionals

Our objective here is to compute the uncertainty in one-dimen-
sional T, spectra and to compare these uncertainty estimates with

T T T T T

1000

100

AAIC+1

10

Fig. 4. Values of the Akaike information criterion (AIC) are plotted versus the
number of model parameters for delta-function bases (solid) and boxcar-function
bases (dashed). Lower values of the AIC indicate better models.

those made by an alternative algorithm presented in [7]. We
choose to examine the uncertainty in T, spectra by examining
the impact of this uncertainty on functionals of the spectra, as
was done in [7]. In this comparison we use the functionals for total
porosity (p;) and bound porosity (p,) defined by

pr= [ fmalog(n) and
(12)

po= | f(Dalog(T).

where we use T. = 0.033 s, a typical value used for sandstone [15].
Histograms of p; and p; were generated from Monte Carlo samples
of f(T).

One might suppose that spectral uncertainty would be better
examined by directly displaying the uncertainty in f, for example
via a plot of the mean spectrum along with 95% confidence limits.
Unfortunately such displays are misleading because they ignore
the strong correlations that exist between parameters [9,7]. For
example, an increase in the spectrum for one value of T can be
compensated for by decreasing the spectrum at a neighboring va-
lue of T. This results in overly large confidence limits since such a
plot only shows the marginal uncertainty in the spectrum for any
given value of T. We sidestep this complexity through the use of
functionals — functionals map the spectrum into a single random
variable that can be easily histogrammed.

4.1. Uncertainty in total porosity

Estimates of the uncertainty of p, were computed from 10*
Monte Carlo samples for both types of basis function. These results
are plotted versus k in Fig. 5. The spectrum used to synthesize our
synthetic data was chosen such that p; is precisely 0.1.

First consider the case when the model is inadequate to repre-
sent the data, namely for k < 6. Here the misfit is large and the var-
iance is underestimated, leaving the true value of p; well outside of
the error bounds of the estimate. This is hardly surprising, because



122 M. Prange, Y.-Q. Song/Journal of Magnetic Resonance 204 (2010) 118-123

T T T T T

Uncorrected % ]

1 1 1 1

2 5 10 20 50 100

Fig. 5. Estimates of p;, along with their uncertainty, are plotted versus the number
of parameters (k) as mean curves and the mean * one standard deviation confidence
limits for delta-function bases (solid line and circles) and boxcar-function bases
(dashed lines and open circles). The true value of 0.1 is indicated by a dotted line.
The “uncorrected” and “corrected” values (open squares), taken from [7], are
computed for the same synthetic data using 100 delta functions at fixed spectral
locations (k = 100), where the correction is a post-processing step designed to
remove the bias.

the trade-off between goodness of fit and variance is the founda-
tion of how statisticians frame the principle of parsimony. Parsi-
mony seeks to find the model with “the smallest number of
parameters for adequate representation of the data” [13, p. 31].
We use the AIC to manage this trade-off.

The AIC identifies k = 6 as the optimum model complexity for
both the delta-function and boxcar-function bases. The k=6
uncertainty estimates for both basis types result in reasonable esti-
mates of p;, meaning that the true value is a probable sample from
the uncertainty distribution.

For k > 6 the delta-function models still provide reasonable
estimates of p;, but the means are upwardly biased and the vari-
ance is increased to compensate for this bias. The reason for this
positive bias is discussed in depth in [7]. In short, the addition of
extra parameters that are not needed to match the data allows
these parameters to be assigned to small T, values whose spectra
are not strongly constrained by the data. Since the spectral values
are constrained to be positive, this produces an upward bias in the
estimate of p;. This effect can be seen in Fig. 2c, where the addition
of one extra delta-function has added substantial spectral energy
at small T, values.

From this reasoning an upward bias is also expected with the
boxcar basis models for k > 6, but the results plotted in Fig. 5 do
not possess this bias. The absence of this bias is not clearly under-
stood. Since each basis function represents an interval of the spec-
trum instead of just a point value as in the delta-function basis,
perhaps this extended nature makes it more difficult to match just
the noise at small T, values.

Our results in Fig. 5 are now compared with the uncorrected
and bias-corrected estimates presented in [7]. These are plotted
at k=100 in Fig. 5 because that uncertainty quantification ap-
proach is equivalent to using our delta-function basis approach
with 100 delta functions of fixed position and varying amplitude.
The bias in that uncorrected result is much larger than that of
our results. However, the bias-corrected result agrees well in mean
with our boxcar-basis result, but has a standard error that is about
twice the magnitude of our result. In this example we have demon-
strated that our sparse boxcar-basis results are much improved
over an approach that represents the spectrum by many delta
functions of fixed position and varying amplitude. This is probably
due to the increase in variance resulting from the bias correction
required by that approach.

4.2. Uncertainty in bound porosity

In saturated porous media, water in small pores is bound by
capillary force, and its amount can be determined by integrating
the T, spectrum up to a cutoff value (typically 0.033 s). Uncertainty
in the estimate of such bound porosity, pg, is plotted versus k in
Fig. 6 for both delta- and boxcar-function bases. Since p, focuses
on the lower T, part of the spectrum, the effect of a positive bias
in that zone will have a proportionally larger impact than with
pr. The true value in this case is p; ~ 0.014. As expected, for
k < 6 both bases provide poor estimates of the uncertainty. For
k > 6, the boxcar-function basis yields good estimates, while the
delta-function basis once again has a positive bias. Thus we have
shown that in this example the delta-function basis provides a
poor estimator of p, even when the optimum k is chosen using
the AIC.

A key difference between the delta-function and boxcar-basis
estimators is highlighted in Fig. 7, where the two estimators are
compared for k = 6. The histogram for the boxcar-basis estimator
is unimodal and is peaked near the true value. In contrast, the esti-
mator using the delta-function basis is bimodal, with low probabil-
ity at the true value. The reason for this bimodality is apparent in
Fig. 2a. When the leftmost of the three spikes is to the right of the
cutoff time, T. = 0.033 s, the value of p; is zero, while it is non-zero
otherwise. As this spike dances around from sample to sample, an

0.025 |

0.020 |

0.015 | y
4@~ = — = @ =~ <@« 10+ +0--0--0~C-©

Pg

0.010 |

0.005 |

0.000 E

Fig. 6. Estimates of p;, along with their uncertainty, are plotted versus the number
of parameters (k) as mean curves and the mean * one standard deviation confidence
limits for delta-function bases (solid lines and circles) and boxcar-function bases
(dashed lines and open circles). The true value of 0.014 is indicated by a dotted line.

Probability Desity (arbitrary Unit)

o] IS

0.000 0005 0010 0015 0020 0025 0030
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Fig. 7. Histograms for p, estimated using the delta-function (wide bins) and
boxcar-function (narrow bins) bases for k = 6. The arrow indicates the true value of

Ps-
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artificial transition is created that is simply due to the infinitesimal
width of the spike. This problem does not occur in the estimation
of p; because there is no cutoff time in that case. It was this obser-
vation led us to postulate that a more robust estimator might be
created by allowing the spikes to have width (the boxcar-basis),
thereby minimizing the effect of this transition.

5. Discussion

The examples in Figs. 2 and 3 show clearly that models with
dramatically different functional forms (and shapes of the relaxa-
tion spectra) can all fit the data within the noise characteristics.
All solutions within each functional form comprise a portion of
the entire ensemble of spectral solutions that satisfy the data. Since
the spectral shapes are substantially different, we expect the solu-
tions of different functional forms occupy somewhat different re-
gions of the solution space. Within each functional form, when
the number of degrees of freedom increases, there is more spectral
variability and the size of the solution region increases. Thus it is
natural to observe an increase in uncertainty with increasing k.

When k is much less than the optimal value by the AIC criterion,
the fit is generally poor and the significantly reduced uncertainty
does not reflect the uncertainty of the data. When k is larger than
optimal, the uncertainty can vary significantly for different bases
and k. This is a direct consequence of the different solution regions
obtained through different basis functions and methods. In fact,
the choice of specific functional form can be a very strong regulator
for reducing model variation and uncertainty provided that the
assumption of the functional form is properly justified. Often, such
justification comes from understanding the physical, chemical and
symmetry properties of the material and the experimental
techniques.

The boxcar-basis is an interesting example of the effect of basis
function choice. Since there is no limit on the width of the boxes
and the Monte Carlo procedure is free to choose very narrow box
widths (reducing to delta functions in the limit of zero box width),
the phase space for the boxcar-basis expansion contains and is
much larger than that for the delta-function basis. Thus it is rare
to see a very narrow box in the spectral solution. This preference
is likely the cause of the improved uncertainty estimates compared
to those using the delta-function basis. The concept of using more
restrictive basis functions is similar in spirit to the use of a regular-
ization method (e.g.,, Ref. [5]).

Although we demonstrate our approach with one-dimensional
data, all aspects of the approach generalize straightforwardly to
higher dimensions. One of the motivations of this work was to
speed up the Monte Carlo method for two- and higher-dimensional
data by reducing the number of free parameters by using sparse-
basis representations. Although the boxcar-function is shown to
be efficient, it is possible that other functions may also be used
to achieve similar results.

6. Conclusions

This paper discusses the uncertainty of Laplace inversion results
obtained from several different methods. Although all of these
methods fit the data well, their uncertainty behavior is markedly
different. The choice of different basis functions can be considered
as applying a prior knowledge of the system, since they restrict the
range of spectral solutions as in a regularization approach. The
commonly-used delta-function basis often possesses a positive
bias and a large variance in the estimate of p; and p;. This positive
bias issue was also demonstrated in [7], where the spectrum is rep-
resented by a large number of spectral bins. On the other hand, the

boxcar-basis function with variable width does not exhibit such
deficiencies and possesses no positive bias. Moreover, the boxcar
basis provides a sparse representation of higher-dimensional spec-
tra, making it a good candidate for use in an efficient algorithm for
two- and higher-dimensional Laplace inversion.

Appendix A. Directed Gibbs’ sampler

A standard Gibbs’ sampler, such as Algorithm A.39 in [11], eval-
uates the n(f) function (Eq. 10) along each parameter in / in turn,
forming a probability distribution along that coordinate direction.
The parameter value is then updated with a value sampled from
that distribution. Once all the parameters in 4 have been updated,
the resulting value of 4 is the new sample drawn from 7(f).

This standard approach becomes inefficient when the distribu-
tion is highly correlated, as it is in the spectral inversion problem.
Imaging a two-dimension problem in which the uncertainty ellipse
is long, narrow and tilted at an angle to the coordinate axes. Since
the standard Gibbs’ sampler samples along the coordinate axes, the
narrow width of the uncertainty ellipse forces the distributions
along each coordinate axis to be commensurately narrow, thereby
preventing long jumps along the long axis of the ellipse. This
means that traversing the long axis of the ellipse will require many
steps of the sampler, i.e., the samples are highly correlated, making
an inefficient sampler.

This problem is avoided by choosing the Gibbs’ sampling direc-
tions to align with the axes of the uncertainty ellipse. This makes
large jumps possible. The inverse covariance matrix is periodically
estimated by computing the Hessian of —log7t(f), and the Gibbs’
sampling directions are set to the eigenvectors of this matrix. Since
the number of 4 parameters is small and the Hessian need not be
frequently updated, the computation expense of this operation is
insignificant.
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